Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2216908120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253002

RESUMO

Succinate produced by the commensal protist Tritrichomonas musculis (T. mu) stimulates chemosensory tuft cells, resulting in intestinal type 2 immunity. Tuft cells express the succinate receptor SUCNR1, yet this receptor does not mediate antihelminth immunity nor alter protist colonization. Here, we report that microbial-derived succinate increases Paneth cell numbers and profoundly alters the antimicrobial peptide (AMP) landscape in the small intestine. Succinate was sufficient to drive this epithelial remodeling, but not in mice lacking tuft cell chemosensory components required to detect this metabolite. Tuft cells respond to succinate by stimulating type 2 immunity, leading to interleukin-13-mediated epithelial and AMP expression changes. Moreover, type 2 immunity decreases the total number of mucosa-associated bacteria and alters the small intestinal microbiota composition. Finally, tuft cells can detect short-term bacterial dysbiosis that leads to a spike in luminal succinate levels and modulate AMP production in response. These findings demonstrate that a single metabolite produced by commensals can markedly shift the intestinal AMP profile and suggest that tuft cells utilize SUCNR1 and succinate sensing to modulate bacterial homeostasis.


Assuntos
Anti-Infecciosos , Mucosa Intestinal , Camundongos , Animais , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos , Ácido Succínico/metabolismo , Anti-Infecciosos/metabolismo
3.
Reprod Toxicol ; 111: 27-33, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577017

RESUMO

Endocrine disrupting chemicals (EDCs) target aspects of hormone activity. Tightly coordinated crosstalk between two somatic cells of the ovary, granulosa and theca cells, governs steroid hormone production and plays a critical role in reproduction. It is thus pertinent to understand the impact of EDCs on granulosa and theca cells. Bisphenol A (BPA), a well-known EDC, is widely used in the manufacturing of consumer products with humans routinely exposed. Strong evidence of the adverse effects of BPA on the female reproductive system has emerged and as a result, manufacturers have begun replacing BPA with other bisphenols, such as BPC and BPF. The safety of these analogs is currently unclear and should be investigated independently. Although much is known about the impact of BPA on granulosa cells, similar study of theca cells has been neglected. Further, there is a lack of studies on the impact of BPC and BPF on the female reproductive system. To fill these gaps, the present study compared the effect of BPA, BPC, and BPF on the viability and steroid production of theca cells from bovine, a clinically relevant model for human reproduction. We show that BPC is more detrimental to theca cell viability and progesterone production compared to BPA. Surprisingly, we also found that BPF induces an increase in progesterone production compared to a decrease with BPA and BPC. To determine safety for the reproductive system, we conclude that a major shift away from BPA to bisphenol analogs should be investigated more thoroughly.


Assuntos
Disruptores Endócrinos , Células Tecais , Animais , Compostos Benzidrílicos/toxicidade , Bovinos , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Fenóis , Progesterona/farmacologia , Sulfonas
4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34711682

RESUMO

Immune priming in Anopheles gambiae is mediated by the systemic release of a hemocyte differentiation factor (HDF), a complex of lipoxin A4 bound to Evokin, a lipid carrier. HDF increases the proportion of circulating granulocytes and enhances mosquito cellular immunity. Here, we show that Evokin is present in hemocytes and fat-body cells, and messenger RNA (mRNA) expression increases significantly after immune priming. The double peroxidase (DBLOX) enzyme, present in insects but not in vertebrates, is essential for HDF synthesis. DBLOX is highly expressed in oenocytes in the fat-body tissue, and these cells increase in number in primed mosquitoes. We provide direct evidence that the histone acetyltransferase AgTip60 (AGAP001539) is also essential for a sustained increase in oenocyte numbers, HDF synthesis, and immune priming. We propose that oenocytes may function as a population of cells that are reprogrammed, and orchestrate and maintain a broad, systemic, and long-lasting state of enhanced immune surveillance in primed mosquitoes.


Assuntos
Culicidae/imunologia , Histona Acetiltransferases/metabolismo , Memória Imunológica/imunologia , Animais , Anopheles/imunologia , Anopheles/metabolismo , Culicidae/metabolismo , Feminino , Granulócitos/metabolismo , Hemócitos/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/genética , Insetos/metabolismo , Lipoxinas/metabolismo , Malária/imunologia , Masculino , Peroxidase/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(47): 12566-12571, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114059

RESUMO

A naturally occurring Wolbachia strain (wAnga-Mali) was identified in mosquitoes of the Anopheles gambiae complex collected in the Malian villages of Dangassa and Kenieroba. Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains from supergroup A and has the highest homology to a Wolbachia strain isolated from cat fleas (Ctenocephalides). wAnga-Mali is different from two Wolbachia strains previously reported in A. gambiae from Burkina Faso (wAnga_VK5_STP and wAnga_VK5_3.1a). Quantitative analysis of Wolbachia and Plasmodium sporozoite infection in field-collected mosquitoes indicates that the prevalence and intensity of Plasmodium falciparum sporozoite infection is significantly lower in Wolbachia-infected females. The presence of Wolbachia in females from a laboratory Anopheles coluzzii (A. gambiae, M form) colony experimentally infected with P. falciparum (NF54 strain) gametocyte cultures slightly enhanced oocyst infection. However, Wolbachia infection significantly reduced the prevalence and intensity of sporozoite infection, as observed in the field. This indicates that wAnga-Mali infection does not limit early stages of Plasmodium infection in the mosquito, but it has a strong deleterious effect on sporozoites and reduces malaria transmission.


Assuntos
Anopheles/microbiologia , Interações Hospedeiro-Parasita , Insetos Vetores/microbiologia , Malária Falciparum/transmissão , Plasmodium falciparum/microbiologia , Wolbachia/genética , Animais , Anopheles/parasitologia , Feminino , Interações Hospedeiro-Patógeno , Insetos Vetores/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Mali/epidemiologia , Oocistos/patogenicidade , Oocistos/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença , Esporozoítos/patogenicidade , Esporozoítos/fisiologia , Wolbachia/classificação , Wolbachia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA